Calculation Policy

Introduction

Throughout their school life pupils at Hemingford Grey Primary School will have many opportunities to explore numbers, look for patterns, solve problems and develop their mental and written strategies in the four operations (addition, subtraction, multiplication, division) with accuracy, speed and confidence. We have put together this booklet to guide parents and carers through the stages of development in learning about number and calculation.

For all four operations we have identified a series of steps; pupils will work through these steps as they progress in Maths.

From Foundation Stage to Year 6 pupils will be encouraged to use a range of strategies to support their learning. These include the use of counting materials (fingers, rulers, counters) and we urge parents and carers to support this when their children are learning at home. Pupils are also taught to draw pictures or to make jottings to help them in their calculations. Children are encouraged to look at a calculation with 'number sense.' This means that the child will consider firstly whether to do the calculation mentally, then with jottings or their written method, deciding upon the resources that they need.

Number tracks, number lines and number squares are excellent learning supports for counting forwards and back and for finding patterns and these are easy to make or available to download from a number of websites. (examples are listed at the end of this document.)

Number and calculations play a vital part in our daily lives and we want every pupil to develop a confidence in, and an enjoyment of, numeracy.

Aims

The overall aims are that when children leave Hemingford Grey Primary School they:

- have a secure knowledge of number facts and a good understanding of the four operations;
- make use of diagrams and informal notes to help record steps and part answers when using mental methods that generate more information than can be kept in their heads;
- have an efficient, reliable written method of calculation for each operation that they can apply with confidence when undertaking calculations that they cannot carry out mentally;
- apply their knowledge and understanding of number and calculations to solve real-life problems;
- use estimation effectively, to help them assess the validity of their answers.
- are able to attempt challenges and investigations with confidence, drawing on and reasoning about, prior learning experiences and knowledge

Written methods for addition

To add successfully, children need to be able to:

- recall all addition pairs to $9+9$ and complements in 10 and 100;
- add mentally a series of one-digit numbers, such as $5+8+4 ;$
- add multiples of 10 (such as $60+70$) or of 100 (such as $600+700$) using the related addition fact, $6+7$, and their knowledge of place value;
- partition two-digit and three-digit numbers into multiples of 100, 10 and 1 in different ways.

The models of addition explored are:

- Combining of sets
- Adding on more

Step 1

Using apparatus

Combining groups
7 add 1 equals 8

Jen has seven oranges. Pete has 1 orange. How many do they have in total?

Adding on more 7 and 1 more is 8 more. How many oranges does she have now?

1	2	3	4	5	6	7	8	9	10

Step 2

Number line

$8+5=13$

Step 3

Empty number line

$48+36=84$

Step 4

Partitioning

The tens and ones will be added to form partial sums and then these partial sums will be added together to find the total.

Step 5

Expanded column method

67	67	Initially children add
+ 24	+24	the most significant numbers first, then
80	11	numbers first, then move on very quickly
11	80	to the least significant first.
91	91	

Step 6

Column method

Written methods for subtraction

To subtract successfully, children need to be able to:

- recall all addition and subtraction facts to 10,100 ;
- subtract multiples of 10 (such as $160-70$) using the related subtraction fact,16-7, and their knowledge of place value;
- partition two-digit and three-digit numbers into multiples of one hundred, ten and one in different ways (e.g. partition 74 into $70+4$ or $60+14)$.

The models of subtraction explored are:

- Taking away
- Finding the difference

Step 1

Using apparatus

Informal jottings
Number tracks

Taking away (physical removal)
2 less than 5 is 3
5 subtract 2equals 3

1	2	3	4	5	6	7	8	9	10

Finding the difference (comparison)

Fred has 5 sweets.
He eats 2. How many does he have left?

Using practical resources: I have 8 oranges, James has 7 oranges. How many more do I have?

Step 2

Number line

Taking away

Finding the difference

Step 3

Empty number line

Taking away

$74-27=47$

			20	
4	50	54		

Finding the difference

Where numbers are close together, calculations may best be solves by counting up.
E.g. 1007-993 $=14$

Step 4

Expanded layout

$89-57=32$
$80 \quad 9$
$\frac{50}{} \frac{7}{30} \quad 2=32$
$74-27=47$

60	14
70	7
-20	7
40	7

Step 5

Column method for decomposition

$741-327=414$

31
741
$\begin{array}{r}-327 \\ \hline 414\end{array}$

The terminology is exchanging, not borrowing.

Calculations requiring a lot of exchanging would make the column method error prone. Number sense would suggest that a number line could still be used. Eg 1007-989 is best on a number line.

Written methods for multiplication

To multiply successfully, children need to be able to:

- recall all multiplication facts to 12×12;
- partition number into multiples of one hundred, ten and one;
- work out products such as $70 \times 5,70 \times 50,700 \times 5$ or 700×50 using the related fact 7×5 and their knowledge of place value;
- add two or more single-digit numbers mentally;
- add multiples of 10 (such as $60+70$) or of 100 (such as $600+700$) using the related addition fact, $6+7$, and their knowledge of place value;
- add combinations of whole numbers using the column method

The models of multiplication explored are:

- Repeated addition
- Arrays
- Scaling

13

Step 1: repeated addition and arrays using apparatus and informal jottings

Scaling: build a tower with 2 cubes. Now build it 3 times taller.

Step 2

Repeated addition recorded on a number line

$5 \times 3=15$

Step 3

Empty number line

$$
36 \times 3=108
$$

(20

Step 4

Grid method

$14 \times 6=84$
$286 \times 29=8294$ 4000

x	10	4
6	60	24

x	200	80	6
20	4000	1600	120
9	1800	720	54

+24
$\underline{84}$
$\begin{array}{r}+\quad 54 \\ \hline\end{array}$
8294
2

Step 5

Expanded short multiplication

14
$\times 6$
24
60
84

Stage 6

Stage 7

Long multiplication

Refer to the place value in the column when carrying

342×7 becomes
$\begin{array}{r}342 \\ \times \quad 3 \\ \hline 2394 \\ \hline 21\end{array}$
Answer: 2394
2741×6 becomes

Answer: 16446
24×16 becomes

\times	1	6
2	4	0
1	4	4
3	8	4

	1	2
	1	2
\times		2
2	4	8
	7	4
3	2	2
1	1	

Answer: 3224

6 shared between 2

How many $2 s$ in 6 ?

Written methods for division

To divide successfully, children need to be able to:

- understand and use the vocabulary of division. For example in $18 \div 3=6$, the 18 is the dividend, the 3 is the divisor and the 6 is the quotient;
- partition two-digit and three-digit numbers into multiples of 100, 10 and 1 in different ways;
- recall multiplication and division facts to 12×12;
- recognise multiples of one-digit numbers and divide multiples of 10 or 100 by a single-digit number using their knowledge of division facts and place value;
- know how to find a remainder working mentally - for example, find the remainder when 48 is divided by 5;
- understand and use multiplication and division as inverse operations.

The models of division explored are:

- Sharing equally
- Grouping
- Linking
with fractions
divide division divided by
share sharing equal equally

Step 1

Using apparatus

Informal jottings

Sharing equally

Grouping or repeated subtraction

There are 6 sweets, how many people can have 2 sweets each?

Step 2

Number line

$12 \div 3=4$

Step 3

Empty number line

$82 \div 3=27 r 1$

Step 4

Chunking (grouping model)

$96 \div 6=16$

Chunking is inefficient if too many subtractions need to be carried out. Reduce the number of steps to encourage finding the largest possible multiples.
$1=27 \mathrm{r} 1$

$82 \div 3=$	$27 r 1$
382 22 20×3 $\frac{-21}{1}$ $=27 \mathrm{r} 1$	

Step 6

Long division

Answer: 14
Answer: 86 remainder 2

Useful Websites

www.bbc.co.uk/schools www.dur'ham.schooljotter"com/coxhoe www.ictgames.com www.mathszone.co.uk www.multiplication.com

www.woodlands-junior.|kent.sch.uk/maths

Glossary

BRIDGING through 10 is when two single-digit numbers are added together to make a quantity bigger than 10, eg $7+8$ CHUNKING is adding or subtracting the multiples of a divisor Eg 165 divided by 15 equals 11 because $10 \times 15=150$ and $1 \times 15=15$ COMPLEMENTs are pairs of number that equal a number when added

DIGITS are the numerals 0123456789
Eg 352 has 3 digits; 5692 has 4 digits
DIVISOR is the number used to divide by
Eg 100 divided by 5 (5 is the divisor)
FACTOR a whole number that divides exactly into another number Eg FACTORS of 10 are 1, 2 and 5

MULTIPLE a number that can be divided by another number equally $\mathrm{Eg} 20,30,40$ and 50 are all multiples of 10

NUMBER BONDS known addition facts of pairs of numbers up to and totalling 10 Eg 5+5=10 and 4+6=10 and 3+7=10

PARTITIONING is to split a number by its place value ($\mathrm{H}, \mathrm{T}, \mathrm{U}$)
Eg 392 is $300+90+2$
PLACE VALUE is the value of each digit in a number
Eg In 462 the 4 is 4 hundreds and the 6 is 6 tens and the 2 is 2 units

PRODUCT is the answer when two or more numbers are multiplied Eg 50 is the product of 5×10

